Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes.
نویسندگان
چکیده
We report the isolation and characterization of CjNdly, a homolog in Japanese cedar (Cryptomeria japonica D. Don) of the FLORICAULA/LEAFY (FLO/LFY) genes. We determined the entire nucleotide sequence of CjNdly, including short 5'- and 3'-untranslated regions. The deduced amino acid sequence was similar to those of the products of the FLO/LFY genes from other species. The nucleotide sequence showed the closest homology to that of the NEEDLY gene in Pinus radiata D. Don. Although no proline-rich region has been reported previously in homologous gene products from gymnosperms, we found such a region at the amino-terminal end of the deduced amino acid sequence encoded by CjNdly. We detected the expression of CjNdly in both reproductive and vegetative tissues and organs of C. japonica. Heterologous expression of CjNdly in transgenic tobacco plants induced precocious flowering of regenerating shoots on agar-solidified medium and flowers with an abnormal phenotype, namely, petal-like stamens. Our findings suggest that the CjNdly gene may have important roles in flower development in Japanese cedar, resembling those of its angiosperm homologs.
منابع مشابه
Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae).
Members of the grass family (Poaceae) exhibit a broad range of inflorescence structures and other morphologies, making the grasses an interesting model system for studying the evolution of development. Here we present an analysis of the molecular evolution of FLORICAULA/LEAFY-like genes, which are important developmental regulatory loci known to affect inflorescence development in a wide range ...
متن کاملFunctional Characterization of PhapLEAFY, a FLORICAULA/LEAFY Ortholog in Phalaenopsis aphrodite.
The plant-specific transcription factor LEAFY (LFY) is considered to be a master regulator of flower development in the model plant, Arabidopsis. This protein plays a dual role in plant growth, integrating signals from the floral inductive pathways and acting as a floral meristem identity gene by activating genes for floral organ development. Although LFY occupies an important position in flowe...
متن کاملNEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems.
The LEAFY/FLORICAULA genes from Arabidopsis and Antirrhinum are necessary for normal flower development and play a key role in diverse angiosperm species. A homologue of these flower meristem-identity genes, NEEDLY (NLY), has been identified in Pinus radiata. Although the NLY protein shares extensive sequence similarity with its angiosperm counterparts, it is lacking the proline-rich and acidic...
متن کاملLEAFY controls floral meristem identity in Arabidopsis
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the m...
متن کاملIdentification, Isolation and Expression Analysis of Hevein gene Family in Barley (Hordeum vulgar)
Today, antimicrobial peptides are known as a new generation of antibiotics for treatment of microbial diseases in human and animals and protecting plants against different pathogens. Heveins are a group of antimicrobial peptides which are considered as one of the most important groups of antimicrobial peptides due to the very high diversity and expression in different plant organs as well as th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2008